Combinatorial proofs of inverse relations and log-concavity for Bessel numbers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial proofs of inverse relations and log-concavity for Bessel numbers

Let the Bessel number of the second kind B(n, k) be the number of set partitions of [n] into k blocks of size one or two, and let the Bessel number of the first kind b(n, k) be the coefficient of x in −yn−1(−x) , where yn(x) is the nth Bessel polynomial. In this paper, we show that Bessel numbers satisfy two properties of Stirling numbers: The two kinds of Bessel numbers are related by inverse ...

متن کامل

Bell Numbers, Log-concavity, and Log-convexity

Let fb k (n)g 1 n=0 be the Bell numbers of order k. It is proved that the sequence fb k (n)=n!g 1 n=0 is log-concave and the sequence fb k (n)g 1 n=0 is log-convex, or equivalently, the following inequalities hold for all n 0, 1 b k (n + 2)b k (n) b k (n + 1) 2 n + 2 n + 1 : Let f(n)g 1 n=0 be a sequence of positive numbers with (0) = 1. We show that if f(n)g 1 n=0 is log-convex, then (n)(m) (n...

متن کامل

A combinatorial proof of the log-concavity of the numbers of permutations with k runs

We combinatorially prove that the number R(n, k) of permutations of length n having k runs is a log-concave sequence in k, for all n. We also give a new combinatorial proof for the log-concavity of the Eulerian numbers.

متن کامل

Combinatorial Proof of the Log-Concavity of the Numbers of Permutations with k Runs

Let p= p1 p2 } } } pn be a permutation of the set [1, 2, ..., n] written in the one-line notation. We say that p get changes direction at position i, if either pi&1pi+ j , or p i&1>pi>pi+1 , in other words, when p i is either a peak or a valley. We say that p has k runs if there are k&1 indices i so that p changes direction at these positions. So, for example, p=3561247 has 3 runs as p chan...

متن کامل

Log-concavity of Stirling Numbers and Unimodality of Stirling Distributions

A series of inequalities involving Stirling numbers of the first and second kinds with adjacent indices are obtained. Some of them show log-concavity of Stirling numbers in three different directions. The inequalities are used to prove unimodality or strong unimodality of all the subfamilies of Stirling probability functions. Some additional applications are also presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2008

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2007.12.002